Search results

Search for "scanning probe lithography" in Full Text gives 10 result(s) in Beilstein Journal of Nanotechnology.

Advanced scanning probe lithography using anatase-to-rutile transition to create localized TiO2 nanorods

  • Julian Kalb,
  • Vanessa Knittel and
  • Lukas Schmidt-Mende

Beilstein J. Nanotechnol. 2019, 10, 412–418, doi:10.3762/bjnano.10.40

Graphical Abstract
  • hydrothermally grown rutile TiO2 nanorods [36]. Beside the homogeneous growth on macroscopic areas, we indicated how to trigger the growth via conventional electron-beam lithography locally. In this report, we apply an advanced but inexpensive scanning probe lithography technique to draw thin lines of nanorods
  • by the described hydrothermal growth method have a rutile crystal structure [42]. The resulting nanostructures obtained with scanning probe lithography are presented in Figure 2 by SEM. For comparison, the same structures were fabricated with electron-beam lithography to demonstrate that both
  • grains have diameters between 5 and 100 nm and hence, their dimensions are similar to those of the nanorods. Instead of using a mask, scanning probe lithography generates locally anatase nanoparticles by scraping an AFM tip across an anatase film. The transformation of anatase nanoparticles into rutile
PDF
Album
Supp Info
Full Research Paper
Published 08 Feb 2019

Size limits of magnetic-domain engineering in continuous in-plane exchange-bias prototype films

  • Alexander Gaul,
  • Daniel Emmrich,
  • Timo Ueltzhöffer,
  • Henning Huckfeldt,
  • Hatice Doğanay,
  • Johanna Hackl,
  • Muhammad Imtiaz Khan,
  • Daniel M. Gottlob,
  • Gregor Hartmann,
  • André Beyer,
  • Dennis Holzinger,
  • Slavomír Nemšák,
  • Claus M. Schneider,
  • Armin Gölzhäuser,
  • Günter Reiss and
  • Arno Ehresmann

Beilstein J. Nanotechnol. 2018, 9, 2968–2979, doi:10.3762/bjnano.9.276

Graphical Abstract
  • ][20][21], laser annealing [22][23][24], thermally assisted scanning probe lithography [25], or a combination of spatially broad laser- or ion-beams and shadow masks [26][27][28][29][30]. Especially in magnonic [14] and sensor applications [4] in-plane magnetic domain patterns play a key role and are
  • assisted scanning probe lithography [25] or 250 nm wide dots fabricated by direct interferometric laser annealing [34]. Local annealing, however, results in three-dimensional temperature gradients within the magnetic film causing thermal diffusion and material intermixing over several hundreds of
PDF
Album
Full Research Paper
Published 03 Dec 2018

Charged particle single nanometre manufacturing

  • Philip D. Prewett,
  • Cornelis W. Hagen,
  • Claudia Lenk,
  • Steve Lenk,
  • Marcus Kaestner,
  • Tzvetan Ivanov,
  • Ahmad Ahmad,
  • Ivo W. Rangelow,
  • Xiaoqing Shi,
  • Stuart A. Boden,
  • Alex P. G. Robinson,
  • Dongxu Yang,
  • Sangeetha Hari,
  • Marijke Scotuzzi and
  • Ejaz Huq

Beilstein J. Nanotechnol. 2018, 9, 2855–2882, doi:10.3762/bjnano.9.266

Graphical Abstract
  • structuring techniques are required. Among several candidates, molecular self-assembly and self-organization of structures represent the so-called bottom-up approach. Nanoindentation, thermal scanning probe lithography, local oxidation lithography, dip-pen lithography, extreme UV lithography or X-ray
  • generate the lithographic pattern. The first approach, termed scanned beam technology, comprises electron and ion beam lithographies and electron/ion beam induced deposition. It has its origins in the scanning electron microscope and, more recently, the scanning ion microscope. Scanning probe lithography
  • , the second approach, also stems from microscopy in the form of scanning tunneling microscopy and atomic force microscopy; the corresponding lithography techniques include scanning tunneling lithography and field-emission scanning probe lithography. The electron microscope evolved from the use of
PDF
Album
Review
Published 14 Nov 2018

Identifying the nature of surface chemical modification for directed self-assembly of block copolymers

  • Laura Evangelio,
  • Federico Gramazio,
  • Matteo Lorenzoni,
  • Michaela Gorgoi,
  • Francisco Miguel Espinosa,
  • Ricardo García,
  • Francesc Pérez-Murano and
  • Jordi Fraxedas

Beilstein J. Nanotechnol. 2017, 8, 1972–1981, doi:10.3762/bjnano.8.198

Graphical Abstract
  • ranging between 40 and 180 s was applied while the stamp was gently (50 kPa) pressed upon the substrate. Relative humidity was kept above 70%. These parameters are similar to the parameters used to perform an oxidation scanning probe lithography (SPL) experiment [29]. The authors have already demonstrated
PDF
Album
Supp Info
Full Research Paper
Published 21 Sep 2017

Boosting the local anodic oxidation of silicon through carbon nanofiber atomic force microscopy probes

  • Gemma Rius,
  • Matteo Lorenzoni,
  • Soichiro Matsui,
  • Masaki Tanemura and
  • Francesc Perez-Murano

Beilstein J. Nanotechnol. 2015, 6, 215–222, doi:10.3762/bjnano.6.20

Graphical Abstract
  • of field-induced, chemical process efficiency. Keywords: carbon nanofiber; dynamic mode; local anodic oxidation; nanopatterning; Introduction Scanning probe lithography (SPL) is increasing its relevance among currently employed methods towards miniaturization and investigations at the nanometer
PDF
Album
Full Research Paper
Published 19 Jan 2015

Surface assembly and nanofabrication of 1,1,1-tris(mercaptomethyl)heptadecane on Au(111) studied with time-lapse atomic force microscopy

  • Tian Tian,
  • Burapol Singhana,
  • Lauren E. Englade-Franklin,
  • Xianglin Zhai,
  • T. Randall Lee and
  • Jayne C. Garno

Beilstein J. Nanotechnol. 2014, 5, 26–35, doi:10.3762/bjnano.5.3

Graphical Abstract
  • situ AFM studies. The orientation of TMMH on the surface was investigated using approaches with liquid imaging and scanning probe lithography. By using a liquid sample cell for AFM studies, fresh reagents can be introduced to the system for monitoring step-wise changes of a surface over time, such as
  • scanning probe microscope (Agilent Technologies, Chandler, AZ) equipped with PicoView v1.8 software was used for the AFM characterizations and scanning probe lithography. Images were acquired using contact mode in a liquid cell, which can hold up to 1 mL of solution. Imaging and fabrication were
  • stages of the experiment. Scanning probe lithography (nanoshaving and nanografting). Nanoshaving experiments were accomplished by applying a high force (2–5 nN) to sweep a selected area ten times with 256 lines/frame in ethanolic media. The nanoshaved patterns could be imaged in situ using the same probe
PDF
Album
Supp Info
Full Research Paper
Published 09 Jan 2014

Pinch-off mechanism in double-lateral-gate junctionless transistors fabricated by scanning probe microscope based lithography

  • Farhad Larki,
  • Arash Dehzangi,
  • Alam Abedini,
  • Ahmad Makarimi Abdullah,
  • Elias Saion,
  • Sabar D. Hutagalung,
  • Mohd N. Hamidon and
  • Jumiah Hassan

Beilstein J. Nanotechnol. 2012, 3, 817–823, doi:10.3762/bjnano.3.91

Graphical Abstract
  • propagating into the channel. This mechanism reduces the channel modulation effects and at high drain voltage, this barrier causes the saturation of current. Conclusion We have presented fabrication of p-type DGJLTs using an unconventional method of scanning probe lithography and a numerical study of the same
PDF
Album
Full Research Paper
Published 03 Dec 2012

Colloidal lithography for fabricating patterned polymer-brush microstructures

  • Tao Chen,
  • Debby P. Chang,
  • Rainer Jordan and
  • Stefan Zauscher

Beilstein J. Nanotechnol. 2012, 3, 397–403, doi:10.3762/bjnano.3.46

Graphical Abstract
  • lithography [18], electron-beam chemical lithography [19], microcontact printing (µCP) [20], scanning-probe lithography [21] and capillary-force lithography [22], have been exploited over the years, there is still considerable interest in the exploitation of new, simple patterning strategies that do not
PDF
Album
Full Research Paper
Published 15 May 2012

Direct-write polymer nanolithography in ultra-high vacuum

  • Woo-Kyung Lee,
  • Minchul Yang,
  • Arnaldo R. Laracuente,
  • William P. King,
  • Lloyd J. Whitman and
  • Paul E. Sheehan

Beilstein J. Nanotechnol. 2012, 3, 52–56, doi:10.3762/bjnano.3.6

Graphical Abstract
  • , whereas deposition onto vacuum reconstructed silicon yielded polymer chains aligned along the surface. Keywords: additive lithography; polymer; scanning probe lithography; ultra high vacuum; Introduction The deposition of materials in vacuum is the foundational technology for creating modern electronic
  • -contact printing [4] have been limited to deposition under ambient pressures, and therefore cannot achieve the benefits of the controlled environment under vacuum. One type of additive lithography is scanning probe lithography (SPL) where sharp probes either guide the deposition of material to a substrate
PDF
Album
Letter
Published 19 Jan 2012

The atomic force microscope as a mechano–electrochemical pen

  • Christian Obermair,
  • Andreas Wagner and
  • Thomas Schimmel

Beilstein J. Nanotechnol. 2011, 2, 659–664, doi:10.3762/bjnano.2.70

Graphical Abstract
  • microscopy; deposition; electrochemistry; nanoelectronics; nanofabrication; nanolithography; nanotechnology; NEMS and MEMS; scanning probe lithography; Introduction The controlled, patterned, electrochemical deposition of metals at predefined positions on the nanometer scale is of great interest for
PDF
Album
Full Research Paper
Published 04 Oct 2011
Other Beilstein-Institut Open Science Activities